Pharmaceutical makers sending drug-spiked water to treatment plants

Water treatment plants near drug makers are getting heavily drugged.

Wastewater treatment plants taking discharges from nearby pharmaceutical manufacturers have "substantially" higher concentrations of drugs in the water, according to a new national study.


In the most extreme example, an anti-fungal drug was found at levels 3,000 times higher at a treatment plant near a drug maker compared to treatment plants that don't accept drug maker discharge.

"Unfortunately, this is pretty typical," Jose Lozano, director of The Ithaca Area Wastewater Treatment Facility's Environmental Laboratory in New York, told EHN.

These plants were "not designed to treat these type of compounds," added Lozano, who was not involved in the study.

The research, led by federal scientists at the U.S. Geological Survey and published in Science of the Total Environment, is the first national study to examine drug loads sent to treatment plants from manufacturers and is the latest evidence that manufacturers are sending high loads of their products into our waterways—with the consequences on aquatic and human health still not fully understood.

"Modern wastewater treatment plants mostly reduce solids, and reduce bacteria. They were not engineered to deal with complex compounds," lead author of the study and physical scientist for the USGS, Tia-Marie Scott, told EHN.

Scott and colleagues tested 13 wastewater treatment plants receiving pharmaceutical discharges and six that did not. The plants were across the country—in a variety of urban and rural spots—however, as part of the study, they are anonymous.

They tested for 120 drugs and compounds formed when drugs break down. They found 33 drugs had concentrations "substantially higher" in plants near drug makers.

"There's a lot of variability," Scott said. "Some drugs stayed steady, while others pop up seasonally, like some drugs during flu season, for example."

In addition to the anti-fungal drug, they found: anti-histamines, diabetic medication, muscle relaxants, blood pressure drugs, insomnia drugs, anti-seizure medication and anti-inflammatories. Several of the drugs were found at levels hundreds of times higher near drug makers than at plants not receiving discharge.

Scientists are still trying to understand what the influx of pharmaceutical drugs into our environment may be doing. Much depends on the drug, the mixture and the dose; however, mixes of pharmaceuticals have previously been shown to disrupt the endocrine system of fish, feminized them, altered behavior and reproduction, changed growth, and increased liver sizes.

The authors point out, however, "many of the pharmaceuticals included in this study have not commonly been observed in the environment. Thus, little is currently known about potential environmental effects of these pharmaceuticals."

The Pharmaceutical Research and Manufacturers of America would not comment on the study. A spokesperson said via email that "manufacturing impact isn't the sort of thing we typically have the expertise to comment on."

Seeking solutions

Blue Plains Advanced Wastewater Treatment Plant in Washington, D.C. (Credit: Chesapeake Bay Program)

Lozano said his lab has found that keeping drug-tainted water in the treatment process for longer periods of time helps break down and rid the water of contaminants.

Like many wastewater plants, they let nature take its course — using microorganisms that break down and remove nutrients and organic material in wastewater. "The more time you allow it to spend in the system, you decrease the number of emerging contaminants," Lozano said. "They're more likely to be biodegraded, absorbed or modified."

But cities depend on treatment plants running quickly and efficiently, so this longer retention time "presents a challenge," Lozano said, adding they're experimenting with ways to optimize the process.

For treatment plants across the country trying to tackle emerging contaminants, money is an issue. For instance, many countries in Europe use ultraviolet light to disinfect water, a process that's proven quite effective for pharmaceuticals. But it consumes a lot of energy.

"If we were to implement that in the U.S., it would take a massive investment to solve the problem," Lozano said.

Print Friendly and PDF
SUBSCRIBE TO EHN'S MUST-READ DAILY NEWSLETTER: ABOVE THE FOLD
Valspar cans. (Credit Lynne Peeples)
Originals

Exposed: Toward a BPA-free future

This is part 4 of a 4-part investigation of the science surrounding the chemical BPA and the U.S. regulatory push to discredit independent evidence of harm while favoring pro-industry science despite significant shortcomings.

Keep reading... Show less
Originals

Clouded in Clarity: A comic on chemicals & controversy

Harmful chemicals are difficult to understand. So, to pair with our investigation, "Exposed" we present EHN's first comic, "Clouded in Clarity," which focuses on BPA and the controversy around an ongoing, massive study on it.

Keep reading... Show less
Originals

Exposed: How willful blindness keeps BPA on shelves and contaminating our bodies

We all are exposed daily to bisphenol-A (BPA) and other bisphenols – estrogen-like substances added to food can liners, paper receipts and plastic containers.

Keep reading... Show less
BPA testing in the lab of Cheryl Rosenfeld, a University of Missouri researcher. (Credit: Cheryl Rosenfeld)
Originals

Exposed: A scientific stalemate leaves our hormones and health at risk

This is part 1 of a 4-part investigation of the science surrounding the chemical BPA and the U.S. regulatory push to discredit independent evidence of harm while favoring pro-industry science despite significant shortcomings.

Keep reading... Show less
Researcher Pat Hunt at her Washington State University lab. (Credit: Lynne Peeples)
Originals

Exposed: On the edge of research honesty

This is part 2 of a 4-part investigation of the science surrounding the chemical BPA and the U.S. regulatory push to discredit independent evidence of harm while favoring pro-industry science despite significant shortcomings.

Keep reading... Show less
Researcher Pat Hunt with lab mice in her Washington State University lab. (Credit: Lynne Peeples)
Originals

Exposed: Deciphering the real message about BPA

This is part 3 of a 4-part investigation of the science surrounding the chemical BPA and the U.S. regulatory push to discredit independent evidence of harm while favoring pro-industry science despite significant shortcomings.

Keep reading... Show less
From our Newsroom

Above The Fold

Daily & Weekly newsletters all free.